EPFL scientists have developed a solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2%.

Some of the most promising solar cells today use light-harvesting films made from perovskites -- a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive "hole-transporting" materials, whose function is to move the positive charges that are generated when light hits the perovskite film. Publishing in Nature Energy, EPFL scientists have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20%.

As the quality of perovskite films increases, researchers are seeking other ways of improving the overall performance of solar cells. Inadvertently, this search targets the other key element of a solar panel, the hole-transporting layer, and specifically, the materials that make them up. There are currently only two hole-transporting materials available for perovskite-based solar cells. Both types are quite costly to synthesize, adding to the overall expense of the solar cell.

To address this problem, a team of researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material, called FDT, that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2% -- higher than any other device using perovskites as the main light-harvesting layer.

This is a 3-D illustration of FDT molecules on a surface of perovskite crystals.

Credit: Credit: Sven M. Hein Copyright: EPFL

Related Stories

Unique Material Created for the Next Generation Solar Cells
July 17, 2015 — Researchers have developed mate which offers much cheaper alternative to the one w... a new state version of the perovskite light harvester device a ... read more »

Dye-Sensitized Solar Cells Rival Conventional Cell Efficiency
July 10, 2013 — Dye-sensitized solar cells r... state version of the perovskite light harvester dev... read more »

Low Cost, High Efficiency Solar Technology Developed
Aug. 28, 2012 — Researchers have developed a ne... solar technology that could make solar energy more ... read more »

Interdigitated Back-Contact Silicon Solar Cells Above 23% Efficiency
Dec. 1, 2011 — Scientists have demonstrated an ... cells. The e... 23.3% on interdigit... read more »

Strange & Offbeat

Bringing Time and Space Together for Universal Symmetry

Antarctic Fungi Survive Martian Conditions on the International Space Station

One Trillion Kilometers Apart: A Lone Planet and Its Distant Star

New Method Proposed to Probe the Beginning of the Universe

MATTER & ENERGY

You'll Never 'Be-Leaf' What Makes Up This Battery!

Easier Way to Make 'bijeis,' a Complex New Form of Liquid Matter

Completely New Kind of Polymer Could Lead to Artificial Muscles, Self-Repairing Materials
than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials.

"The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify, and are prohibitively expensive, costing over €300 per gram preventing market penetration," says Nazeeruddin. "By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials -- while matching, and even surpassing their performance."

Story Source:
The above post is reprinted from materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.

Journal Reference:

Cite This Page: MLA APA Chicago

Share This Page:

Matter & Energy News

January 29, 2016

Origami Folding for Pop-Up Furniture

How Key Agent Allows Diseases to Reproduce

Completely New Kind of Polymer

More Offshore Wind Energy With Enormous Blades

Latest Headlines

All-New Multi-Purpose Programmable Optical Chips

All-New Multi-Purpose Programmable Optical Chips

New Battery: Bake a Leaf, and Add Sodium

'Bijels,' a Complex New Form of Liquid...

Transmission Impervious to Eavesdropping?

Reconfigurable Origami Tubes: Many Uses

Virtual Reality Makes Experiments More Realistic

Got Solitons? Seeing a Problem as a Solution

Booster Battery Performance

Heavy Fermions: Nuclear Boost, Superconductivity

Sub-Nanometer Catalysts Do Surprising Things

Enormous Blades Could Lead to More Offshore Energy in US

Large-Scale Conspiracies Would Quickly Reveal Themselves, Equations Show

Delivering the Internet of the Future, at the Speed Light and Open-Sourced

The World's Greatest Literature Reveals Multifractals and Cascades of Consciousness

Robotics Exoskeleton for Shoulder Rehabilitation

In Other News from New

SCIEN

Mexican researchers fit dog with 3D printed prosthetic leg

Knowing all the angles: Ancient Babylonians used tricky geometry

Challenger accident shapes new wave of passenger spaceships

Go figure! Game victory seen as artificial intelligence milestone

HEALTH

WHO says Zika virus spreads explosively, four million cases forecast

Zika vaccine may be ready for emergency use this developer

Deformed babies also suffering eye damage linked to Zika in Brazil

Maternal obesity, diabetes tied to increased autism in kids

ENVIRONMENT

After unusual weather, Cuba struggles to save prized tobacco crop

U.S. federal government in Washington to open on time Friday

Tremors in U.S. Northeast caused by sonic boom, quake: agency

Billionaire Paul Allen’s yacht damaged Caribbean protected coral -media

TECHNOLOGY

Microsoft’s secret weapon for growth in the cloud: email

Sony says bracing for smartphone slowdown after sensor sales dip

Xerox to split in two; give Icahn three board seats: WSJ

U.S., British spies hacked Israeli air force network: reports

http://www.sciencedaily.com/releases/2016/01/160118134534.htm